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Abstract. A quantitative information theory is developed for both classical and quantum 
spin systems. The theory is examined by heavy numerical simulations, which show that 
the information embedded in each weight of the system increases with the size of the 
system. The difference between the notions of capacity and information is examined 
carefully and gives an explanation to the surprising result that the capacity per bit can be 
greater than one. 

The application of statistical physics methods to the investigation of neural network 
models has recently attracted much attention [l]. In the simplest model, the system is 
composed of N binary elements, represented by king spin variables, $, which could 
take the values i t  and connected by the weights (synapses) ( J j j } .  The dynamic of the 
network in the zero temperature limit is given by S,( t + 1 )  = sgn[X.,,,, Jj,S,(t)]. The basic 
task of these networks is to find { J c j }  for which a set of given random pattems, ff = * 1 
with equal probability ( i  = 1,. . . , N, p = 1 , .  . . , p ) ,  are fixed points of the dynamics. 
In the case that such a set of ( J j j }  exists, the p patterns are said to be embedded in 
the network. The critical capacity of the network is defined as the maximal number 
of random patterns, P,, which can be embedded in the network. 

One of the notions which played an important role in the last few years in estimating 
the computational capability of networks was the maximal number of embedding 
patterns per weight. This quantity was calculated analytically for various models, where 
almost all of them were asymmetric networks, J., # A j ,  with a continuous space for the 
weights [2]. However, the capacity per weight was recently found to be unbounded 
[3]. Hence, this notion is not a well defined measure to estimate the capability of 
networks, independent of their architectures. It was recently found that the right notion 
to estimate the computational capability of networks is not the capacity per weight 
but rather the capacity per bit [4]. In the case of discrete weights the computational 
capability of a network is defined as the number of bits which are embedded in the 
pattems divided by the number of bits which are necessary for the representation of 
the weights [4]. In this picture, a network is an ‘information engine’ which converts 
information from one type of presentation to another [SI. More precisely, the network 
translates information from the presentation in the space of the weights to the presenta- 
tion in the space of the spins. 

The capacity of discrete symmetric systems was recently calculated analytically, 
and surprisingly it was found that the capacity per bit can he even greater than one 
[5]. Therefore, it is clear that the capacity per bit is the right measure for feedforward 
networks, but is the wrong measure to estimate the embedded information in symmetric 
systems. In the present situation it is fair to say that the right measure, which is 
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independent of the model, to estimate the computational capability of symmetric 
systems is in question. This question and the relation between the right measure for 
symmetric systems and the capacity per bit is at the centre of this work. A deeper 
understanding of these questions is necessary in order to understand the fundamental 
differences, advantages and disadvantages, between the computational capability of 
physical laws over asymmetric laws. Beside this goal, a consistent quantitative informa- 
tion theory is also necessary to calculate the efficiency of nature to convert information 
from the space of the weights to information in the space of the particles (spins in the 
following discussion). 

In this work a quantitative information theory is built for both classical and quantum 
spin systems in the zeru temperature limit. This theory is examined by heavy numerical 
simulations. The differences between the maximal embedded information in classical 
and quantum systems are examined, and a comparison between the notions information 
and capacity of symmetric systems is discussed. 

The classical spin systems which are examined below are governed by the classical 
Hamiltonian 

N 

where N is the size of the system and the weight J j j  and the spin S, can take any 
discrete values. For simplicity, only the case of king spins, S, =A1 and binary weights, 
Jij = i l ,  is examined. The quantum spin Hamiltonians which are examined are 

N 

i t j  
H4= Ji jS t*Sj  (2) 

where the quantized values of the operator Sf can be chosen arbitrarily. Nevertheless, 
for simplicity, we shall restrict ourselves to the spin-f case with binary weights, Jjj = +1. 
In the following, first the classical case equation (l), is discussed, then the quantum 
case is examined and compared to the classical one. 

The only time independent embedded information of classical systems is the fixed 
points of the dynamics, states which are stable to a single spin flip. In the case of a 
fully connected classical system of size N, the total number of weights is N(N-1) /2  
and hence there are N, =2N"-')'2 d ifferent configurations (in the binary case). A 
configuration embedded a new information if, and only if, its time independent informa- 
tion is not included in the information~of any of the other configurations. More precisely, 
for each configuration one can assign a symbol which stands for a set (list) of the 
stable pattems for this particular configuration [6]. Each configuration has at least one 
fixed point and neglecting the effect of a global inversion symmetry of the Hamiltonian, 
equation (I), the number of fixed points is bounded from above by 2N-'. A configuration 
A, for instance, contains new information if, and only if, the set of patterns represented 
by the A's symbol is not a subset or equal to any other symbol B, where A # B. The 
computational ability of the system is defined by the minimal number of independent 
symbols, N,. Each one of these symbols contains new information and the information 
of all the other symbols is included in the N, symbols. This number can be represented 
by log, N, bits. On the other hand, the total number of conligurations can be represented 
by log, N, = N (  N - 1)/2 bits. Therefore, the efficiency of the system, 7, is 

~=log(Ns)/log(NJ=s 1. (3) 
This quantity represents the ratio between the number of embedded bits in the space 
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of the patterns and the number of embedded bits in the space of the weights. It is 
clear that q is bounded from above by one, since each configuration can contribute 
only one new symbol. Nevertheless, in the following we will explain the fact that even 
when q -z 1, the capacity per bit can be greater than one. 

No analytical method is known for the calculation of the efficiency q, and therefore 
in the following q is examined numerically. However, even numerically, the estimation 
of q is a hard combinatorial problem, since the number of symbols scales with Z N Z  
and their size is bounded from above by order ZN. 

The efficiency of finite size classical systems of size N and with binary weights was 
examined numerically using the following heavy algorithm. 

(a) Run over all the possible configurations, N,. 
(b )  Find the symbol for the actual configuration, namely, a set of stable patterns. 

The symbol is defined to be of size I if it stands for I stable patterns. 
(c) If the symbol is either equal or is a subset of an already existing symbol, then 

continue with the next configuration. 
( d )  If it is a new symbol of size I ,  for instance, add this symbol to the list of 

symbols and delete all symbols in this list of size < I  which are included in this symbol. 
Continue with the next configuration. Note that the maximal size of the symbol is 
taken to be ZN-' rather than ZN, since equation (1) obeys a global inversion symmetry. 

At the end of this procedure the list of the symbols is the minimal list which 
characterizes the computational capability of a binary system of size N. The results 
for an even N c 12 are presented in table 1. Since the number of conligurations grows 
exponentially with N2, an exhaustive search over all the configurations is possible 
only for N S 6. For N > 6 only a subspace of the configurations was examined, either 
by fixing the value of part of the weights or by choosing random fraction of the 
configurations (Euctuations among different samples are found to be negligible). The 
number of examined conligurations is denoted by N,, where in an exhaustive search 
N, =2(N-1)N'2,  as was previously defined. It was found in the simulations that q is a 
non-decreasing function of N,, the number of examined configurations, and hence the 
simulations indicate a lower bound for 1). Furthermore, numerically it is found that 
when N, increases from 2" to Z24 for N = 8, for instance, the number of independent 
symbols, N,, increases, but the change in the value of q (see equation 3) is negligible. 
These results indicate that the lower bound should be very close to the exact value of 
q which is obtained by an exhaustive search (2" configurations in the discussed 
example). Details of the simulations and the behaviour of q as a function of N, will 
be given elsewhere [a]. 

There are two remarkable results which one can conclude from the simulations for 
classical systems. The first conclusion is that 7 is an increasing function of N, where 

' 

T8blel. Number ofsymbols (symbols) andthee6ciency (7 )  forclassical systemsof sue h! 

N Symbols ?I 

2 2 1.000 
4 8 0.300 
6 896 0.654 
8 -0.755 

10 -0.820 
12 -0.998 
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N = 2 is an exceptional value. The second conclusion is that the histogram of the 
minimal list of symbols which characterizes the computational capability of the system 
has a wide distribution. For N = 2 there are 2 symbols of size 1. For N = 4 there are 
8 symbols of size 6. For N = 6  there are 480,384,32 symbols of the sizes 5,6,10 
respectively, where the full list of the 2” symbols (for each one of the configurations) 
is given by 17 952,576,7680,480,480,384,32 for the sizes 1,2,3,4,5,6,10, respectively. 
For N = 8 and N, = 224, the histogram of the minimal list of symbols is given in table 
2, where for N = 10 and 12 the histogram will be presented elsewhere. Note, however, 
that the maximal symbol for N = 10 and 12 is found to be 126 and 462, respectively. 
In general the maximal symbol is at least of size N!/2( N/2)!2 and the number of such 
different symbols is 2N-’ .  This result one can derive from the antiferromagnetic 
configuration and the 2N configurations which are obtained from it by gauge transfor- 
mations. It is also remarkable to note that all these histograms are characterized by 
the absence of symbols up to some minimal size and by a maximum of the distribution 
at a greater size. Furthermore, the result that the minimal list of symbols has a long 
tail plays an important role when the notions capacity and information are compared 
below. 

Table 2. Number of symbols and their suer for N = 8 and N, = 2”. 

Size Symbols Sue Symbols 
~ ~ ~~~ 

4 1 OW 10 10 080 
5 85 032 13 14248 
6 113 736 I5 32 
7 17 056 16 5 376 
8 40 320 35 8 

The efficiency of binary quantum spin systems to convert information from the 
presentation of the weights to the representation of the spins was examined in a similar 
way to the classical one with the following necessary modifications. 

(a) The stable states are replaced by the eigenfunctions of the quantum spin 
Hamiltonian, equation (2). 

(b) The size of the symbols is fixed and equal to 2N, which is the available number 
of dimensions for N quantum spins. 

( c )  A system of odd number of spins is meaningful, since the stable states are well 
defined. 

( d )  The eigenfunctions of a configuration { J }  are the same as for a configuration 
{ - J ] .  Therefore, q is bounded from above by l-l/log2(Nc). 

(e) Each symbol is constructed from degenerate subspaces {dj} such that Z d, = 2N. 
Each vector which is spanned by the subspace d,,  for instance, has the same eigenvalue 
EI . 

(f) A configuration contributes new information if, and only if, its symbol con- 
tributes new information which is not included in any of the other symbols. More 
precisely, a symbol A (X Ai = 2 N )  is included in a symbol B (X B, = 2 N )  if, and only 
if, for any i, A, c in one of the subspaces B,. 

One might consider the following different definition for a new symbol. A symbol 
A does not contribute new information if, and only if, any subspace A, is included in 
a subspace B, of any other symbol, A # B. It is clear that this definition gives a shorter 
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list of symbols. However, this definition is wrong, since the correlations among the 
embedded subspaces in each one of the symbols are lost. As an illustrative example, 
assume that a symbol A is constructed from the subspaces x and y,  a symbol B is 
constructed from the subspaces x, and y ,  and a symbol C is constructed from the 
subspaces x2 and y2,. where x E x, and y c y2 .  According to this definition of a new 
symbol, a symbol A is included in symbols B and C, but the information that the 
subspaces x and y can be embedded simultaneously in one configuration is lost. 
Although this definition of a new symbol is wrong for estimating the embedded 
information in quantum systems, it is relevant for the estimation of the capacity of 
quantum systems, as is discussed below. 

The results for the efficiency of finite quantum spin systems of the sizes 2 s  N s 8 
are summarized in table 3. An exhaustive search over all configurations is possible 
only for NE 6 .  For N = 7 and 8 only a subspace of the cofigurations was examined, 
either by fixing the value of part of the weights or by choosing random fraction of the 
configurations. As for the classical systems, it is found that 7 is roughly independent 
of the fraction of examined configurations. Hence the estimated 7 should be very close 
to the exact value of 7 obtained in an exhaustive search. It is clear that the efficiency, 
7, is an increasing function of N, where N = 4 is an exceptional value which is due 
to strong fluctuations in a small system. 

Table3. Numberofsymbols (symbols) andtheelliciency(p) forquantumsystemsofsize A? 

N Symbols 7 

2 1 0.000 
3 1 0.000 
4 32 0.833 
5 282 0.814 
6 12 112 0.909 
7 -0.93 
8 -0.96 

The number of diferent subspaces which form the list of the minimal number of 
symbols was also calculated and shows that for N = 2  there are 2 subspaces of the 
sizes 1, 3 for N = 3  there are 2 subspaces of size 4, for N = 4  there are 12, 1, 1, 3 
subspaces of the sizes 4, 7,9,  11 and for N = 5  there are 1, 35, 1 symbols of the sizes 
10, 12, 16, respectively. The list for N = 6  is given in table 4. In these calculations, the 
subspace Ak is counted only once even if it appears in many symbols and it is deleted 
if it is included in any subspace B,. Basically, this is the minimal list of subspaces 
from which one can construct the minimal list of symbols which characterizes the 
computational ability of the system. As for the classical case, the distribution of the 
histogram of the subspaces is wide, and the average subspace increases as a function 
of N and is equal to 2, 4, 5.7, 12.05 and 14.5 for N =2, 3, 4, 5 and 6,  respectively. 
The detailed results for the cases N = 7 and 8 will be given elsewhere [7]. 

The minimal list of subspaces which describes the computational ability of a 
quantum system of size N has a long tail, as for classical systems. It is clear that the 
total number of the dimensions of this list of symbols can be even greater than the 
number of codigurations, 2N"-'"2, and the average subspace can be greater than 
N/2.  This is indeed the case for N = 4, 5 and 6. Hence, it is not surprising that one 
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Table 4. The minimal list of subspaces for N = 6 quantum system. 

Sue Symbols Size Symbols 

4 720 
5 1 20 
I 7 
8 360 
IO 780 
I 1  360 
12 270 
13 420 
14 255 
I5 600 
16 330 
17 180 

18 180 
19 41 
20 90 
21 600 
22 270 
23 225 
24 120 
25 202 
27 46 
29 195 
30 15 
31 10 

can define similar quantities to the capacity per bit whose measurements give results 
which are greater than 1, as discussed below for classical systems. 

In the following, the surprising result that the capacity per bit can be greater than 
1 is explained, using the consistent information theory examined above. 

In the case that the histogram of the minimal list of symbols is constructed only 
from one size and its logarithm does not scale with N, the capacity per bit should be 
less than or equal to 1, as is discussed below. Since the number of symbols is bounded 
by the number of configurations, than in the discussed case the maximal number of 
symbols of size P should be less than the total number of configurations 

Therefore, in the leading order P G  N / 2  and the capacity per bit is obviously less than 
or equal to 1. However, in the case that the distribution of the minimal list of symbols 
has a long tail, a symbol of size PI contributes P , ! / ( P ,  - P ) ! P !  subsymbols of size P. 
Neglecting the partial overlap among the symbols, an upper bound for the capacity 
is given by the maximal P which obeys the following inequality 

where nr is the number of symbols of size I and Z nlGZN.  for the classical case. In 
this case the capacity per bit can be greater or less than 1 depending on the details of 
the distribution of the sizes of the symbols. One can say that, in general, the measure 
of the capacity is not the 'natural language' of the system. Indeed, one can verify from 
the abovementioned results that equation ( 5 )  gives a capacity per bit greater than one 
for N s 8, which is possible due to the wide distribution of the size of the symbols. 
This fact was also confirmed by direct simulations to fix the capacity [7], and by an 
exact calculation of the left side of equation ( 5 )  where the correlations among the 
symbols were taken into account. 

In the case of feedforward networks, the size of the symbols (boolean functions) 
is k e d  to be ZN', where N, is the size of the input. Each symbol stands for the type 
and the number of embedded relations between the input and the output for a particular 
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configuration. Hence, the capacity per bit is less than 1. For the binary perceptron [ 8 ] ,  
for instance, the capacity is fixed by the maximal P which obeys the inequality 

2 N  ('p") 2 ('"6). 
The left side of equation (6) stands for the maximal number of symbols of size P 
which can be constructed from 2N symbols where the sue of each one of them is also 
ZN. The right side is the total number of symbols of size P. From the solution of 
equation (6) one obtains that P s  N. 

Finally, note that the behaviour of the system with a deeper synaptic depth is still 
in question. Nevertheless, it is expected that in such a case 7 is higher in the quantum 
case than in the classical one, since the space of the particles in the quantum case is 
continuous. 

One of us (IK) thanks Professor J A Wheeler for his encouragement and for bringing 
[6]  to his attention. . 
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